A certifying algorithm for the path cover problem on interval graphs ∗
نویسنده
چکیده
A certifying algorithm for a problem is an algorithm that provides a certificate with each answer that it produces. The certificate is a piece of evidence that proves that the answer has not been compromised by a bug in the implementation. A path cover of a graph G = (V,E) is a family of vertex-disjoint paths that covers all vertices in V . Given a graph G, the path cover problem is to find a path cover of minimum cardinality. This short note presents an O(n)-time certifying algorithm for the path cover problem on interval graphs given a set of n intervals with endpoints sorted.
منابع مشابه
An optimal algorithm for the k-fixed-endpoint path cover on proper interval graphs
In this paper we consider the k-fixed-endpoint path cover problem on proper interval graphs, which is a generalization of the path cover problem. Given a proper interval graph G and a particular set T of k vertices, the goal is to compute a path cover of G with minimum cardinality, such that the vertices of T are endpoints of these paths. We propose an optimal algorithm for this problem with ru...
متن کاملThe 1-fixed-endpoint Path Cover Problem is Polynomial on Interval Graph
We consider a variant of the path cover problem, namely, the k-fixed-endpoint path cover problem, or kPC for short, on interval graphs. Given a graph G and a subset T of k vertices of V (G), a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint paths P that covers the vertices of G such that the k vertices of T are all endpoints of the paths in P . The kPC problem is ...
متن کاملA polynomial solution to the k-fixed-endpoint path cover problem on proper interval graphs
We study a variant of the path cover problem, namely, the k-fixed-endpoint path cover problem, or kPC for short. Given a graph G and a subset T of k vertices of V (G), a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint paths P that covers the vertices of G such that the k vertices of T are all endpoints of the paths in P. The kPC problem is to find a k-fixed-endpoi...
متن کاملThe robust vertex centdian location problem with interval vertex weights on general graphs
In this paper, the robust vertex centdian location problem with uncertain vertex weights on general graphs is studied. The used criterion to solve the problem is the min-max regret criterion. This problem is investigated with objective function contains $lambda$ and a polynomial time algorithm for the problem is presented. It is shown that the vertex centdian problem on general graphs i...
متن کاملA Linear Time Algorithm for the 1-Fixed-Endpoint Path Cover Problem on Interval Graphs
Let G be an interval graph and take one of its vertices x. Can we find in linear time a minimum number of vertex disjoint paths of G which cover the vertex set of G and have x as one of their endpoints? This paper provides a positive answer to this problem. In the course of developing such an algorithm, we explore the possibility of getting insight on the path structure of interval graphs via g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008